19 research outputs found

    Maeda-Dadhich Solutions as Real Black Holes

    Full text link
    A four-dimensional static Schwarzschild-like solution obtained in [3]-[6] in the frames of the Einstein-Gauss-Bonnet gravity at the Kaluza-Klein split is analyzed. The matter in these solutions is created by auxiliary dimensions. The main goal of our work is to study physically sensible characteristics, which could be observable. Study of the perturbed equations demonstrates their stability under linear perturbations. The specific combinations of the parameters, permitting to construct black hole-like objects with one or two horizons or naked singularities are determined. Stable orbits of test particles around these black holes are presented. We show the exotic thermodynamical properties of the solution, when the Hawking evaporation law has the behavior opposite to usual one in General Relativity

    Wormholes and Naked Singularities in Brans-Dicke cosmology

    Full text link
    We perform analytical and numerical study of static spherically symmetric solutions in the context of Brans-Dicke-like cosmological model by Elizalde et al. with an exponential potential. In this model the phantom regime arises without the appearance of any ghost degree of freedom due to the specific form of coupling. For the certain parameter ranges the model contains a regular solution which we interpret as a wormhole in an otherwise dS Universe. We put several bounds on the parameter values: ω<0,α2/ω<105,22.7 ⁣ϕ0 ⁣25\omega<0 ,\,\, \alpha^2/|\omega|<10^{-5},22.7\lesssim\!\phi_0\!\lesssim25\,. The numerical solution could mimic the Schwarzschild one, so the original model is consistent with astrophysical and cosmological observational data. However differences between our solution and the Schwarzschild one can be quite large, so black hole candidate observations could probably place further limits on the ϕ0\phi_0 value.Comment: 20 pages, 6 figures, typos & errors correcte

    Observational Limits on Gauss-Bonnet and Randall-Sundrum Gravities

    Full text link
    We discuss the possibilities of experimental search for new physics predicted by the Gauss-Bonnet and the Randall-Sundrum theories of gravity. The effective four-dimensional spherically-symmetrical solutions of these theories are analyzed. We consider these solutions in the weak-field limit and in the process of the primordial black holes evaporation. We show that the predictions of discussed models are the same as of General Relativity. So, current experiments are not applicable for such search therefore different methods of observation and higher accuracy are required.Comment: 7 pages, accepted to JET

    Fab Four self-interaction in quantum regime

    No full text
    Abstract Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed

    Maeda-Dadhich Solutions as Real Black Holes

    No full text
    A four-dimensional static Schwarzschild-like solutions obtained in [4, 5] in the frames of the Einstein-Gauss-Bonnet gravity at the Kaluza-Klein split are analyzed. In such models matter is created by auxiliary dimensions. The main goal of our work is to check that these solutions are physically sensible, and to examine their characteristics, which could be observable
    corecore